Standards and Markings

European standards have been developed to unify national provisions relating to PPE across Member States. Council Directive 89/391/EEC sets  broad guidelines for health and safety at workplace and places a duty for employer “to make appropriate personal protective equipment available to their staff”.  It also introduces strict requirements for PPE suppliers. Now these requirements are acknowledged internationally helping employers to choose the right PPE, including protective gloves.

Standards

General Requirements

General Requirements

Categories

In order to comply with a number of requirements in the commercial sector, protective gloves are separated into three categories:

Category I:     For minimal risks.
Category II:    For intermediate risks, e.g. mechanical risks.
Category III:   For irreversible or mortal risks, e.g. injuries from chemicals.

A declaration of conformity is required for all categories. The manufacturer or importer must provide a declaration of conformity upon request.

 

EN 420:2003

EN 420:2003

General requirements for protective gloves.

All PPE protective gloves must comply with this standard. It covers areas including:

Design and construction

Gloves should provide the highest degree of protection for intended area of use.

Safety and innocuousness

  • Glove itself should not cause any harm to user.
  • pH value should be between 3.5 and 9.5.
  • Chromium VI content should not exceed < 3 mg/kg.
  • Latex gloves should be tested on protein content as per EN 455-3.
  • Gloves that are designed to reduce the risk of electrostatic discharges, should be tested as per EN 1149 for electrostatic properties.

Dexterity. Performance is graded as per table below:

Performance levelSmallest diameter (mm) of pin that can be picked up with a gloved hand 3 times / 30 seconds.
111.0
29.5
38.0
46.5
55.0

Comfort and efficiency. Sizing as per table below:

Swipe table to see more data
EN 420Equals toHand circumference/Length (mm)Minimum length of the glove (mm)
6XS152/160220
7S178/171230
8M203/182240
9L229/192250
10XL254/204260
11XXL279/215270

General requirements for instruction of use must include:

  • Name and address of the manufacturer or representative;
  • Glove designation;
  • Available size range;
  • CE mark;
  • Care & storage instructions;
  • Instructions and limitations of use;
  • Name and address of notified body that certified the product.
EN 388:2003

EN 388:2003

Protective Gloves against Mechanical Risks

This standard applies to all protective gloves in respect of physical and mechanical stress caused by abrasion, cut, tearing and puncture.

Protection against mentioned hazards is expressed by a pictogram followed by four numbers (performance levels), each representing test performance against a specific hazard.

EN 388abcd
  • aAbrasion resistance (x, min. 0, max. 4)
  • bBlade cut resistance (x, min. 0, max. 5)
  • cTear resistance (x, min. 0, max. 4)
  • dPuncture resistance (x, min. 0, max. 4)

Level X means that this test cannot be carried out on this particular glove. The higher the level, the better performance

A - Abrasion resistance
Based on number of cycles needed to abrade through a sample of glove. Samples are cut from glove palm and rubbed against a standard sand paper under a constant standard pressure. Number of cycles is measured when a hole appears on any of the samples.

B - Blade cut resistance
Based on the number of cycles required to cut through the sample from glove palm by circular, counter-rotating blade.

C - Tear resistance
Based on the amount of force required to tear the sample apart.

D - Puncture resistance
Based on the amount of force required to penetrate the sample with a defined stylus. This is not an indication of the resistance to sharply pointed objects, e.g. hypodermic needle.

Swipe table to see more data
 TestPerformance Level
1 23 4 5
A
Abrasion resistance1005002.0008.000 
Blade cut resistance1,22,55,010,020,0
Tear resistance10255075 
D
Puncture resistance2060100150 
EN 374:2003

EN 374:2003

Protective gloves against chemicals and micro-organisms

This standard specifies gloves capability to act as a barrier against chemicals and/or micro-organisms. It consists of three parts:

  • Part 1: Mechanical and physical integrity (according to EN 388:2003)
  • Part 2: Resistance to penetration (EN 374-2:2003)
  • Part 3: Resistance to permeation by chemicals (EN 374-3:2003)

Part 2: Resistance to penetration (EN 374-2)

EN374-2 EN 3882
Penetration is a physical process whereby a liquid or air penetrates a fabric by passing through pores, seams or pinholes in the fabric

Two tests are performed in this part of EN 374:2003:

  • Air leak test. Glove is inflated with air pressure and submerged into a tank of water. Leaks are identified by visible bubbles.
  • Water leak test. Glove is filled with water and its outer surface is examined for water drops.

Gloves should not leak and should be inspected in compliance with the acceptable quality level (AQL).

Performance levelAcceptable quality level (AQL)
3<0,65
2<1,5
1<4,0

The higher the level, the better performance.

A glove is considered as offering protection against bacteria and molds if it achieves at least penetration level 2.

Part 3: Resistance to permeation by chemicals (EN 374-3:2003)

Permeation is a process by which a potentially hazardous chemical moves through a material on a molecular level. In the laboratory, permeation is measured by a parameter called breakthrough time.

Breakthrough time is the time a potentially hazardous chemical takes to permeate through the glove material and reach the inside of the glove. It is determined by applying a potentially hazardous chemical to exterior surface of the glove and measuring the time taken until chemical is detected on the inside surface. It gives the indication for how long a glove can be used with a certain chemical.

Swipe table to see more data
Performance Level123456
Measured Breakthrough time (min)≥10≥30≥60≥120≥240≥480

Although tests are performed according to the norm, factors such as temperature and stretching have a great influence on how fast the chemical permeates the glove material. Granberg recommends a 25% safety margin.

Full chemical resistance

EN374-3 EN 388A B C
The “chemical resistant” glove pictogram must be accompanied by a 3-digit code. In order to be certified as “chemical resistant”, the gloves must achieve a minimum of level 2 (breakthrough time of greater than 30 minutes) against at least 3 chemicals from a list of 12 standard defined chemicals.
Swipe table to see more data
List of 12 Standard Defined Chemicals
Code LetterChemicalCAS numberClass
AMethanol67-56-1Primary alcohol
BAcetone67-64-1Ketone
CAcetonitrile75-05-8Nitrile compound
DDichloromethane75-09-2Chlorinated paraffin
ECarbon disulfide75-15-0Sulphur containing organic compound
FToluene108-88-3Aromatic hydrocarbon
GDietylamine109-89-7Amine
HTetrahydrofurane109-99-9Heterocyclic and
ether compound
IEthyl acetate141-78-6Ester
Jn-Heptane142-82-5Saturated hydrocarbon
KSodium hydroxide 40%1310-73-2Inorganic base
LSulphuric acid 96%7664-93-9Inorganic acid

Low chemical resistance

EN374-3 EN 388
The ‘Low chemical resistant’ glove pictogram is used for those gloves that do not achieve a breakthrough time of at least 30 minutes against at least three chemicals from the List of 12 standard defined chemicals, but which comply with the Penetration test.
EN 388A...L 1...6
Chemical resistant
  • A _ _ L Code letter; refers to the chemical tested.
  • 1 _ _ 6 Numeric code; refers to the breakthrough time.
EN 388A...L 1...6
Low chemical resistant
  • A _ _ L For gloves with low chemical resistance, reference to tests nad results not required.
  • 1 _ _ 6
EN 407:2004

EN 407:2004

Protective gloves against thermal risks.

This standard specifies thermal performance for protective gloves against heat and/or fire.

The nature and degree of protection is shown by a pictogram followed by a series of six performance levels, relating to specific protective qualities. Gloves must also achieve at least Performance level 1 for EN 388:2003 standard abrasion and tear.

EN 407abcdef
  • aBurning behaviour (x, 0-4)
  • bContact heat resistance (x, 0-4)
  • cConvective heat resistance (x, 0-4)
  • dRadiant heat resistance (x, 0-4)
  • eResistance to small splashes of molten metal(x, 0-4)
  • fResistance to large splashes of molten metal (x, 0-4)

Level X means that this test cannot be carried out on this particular glove. The higher the level, the better performance.

A - Burning behaviour (Performance level 0-4)

Based on the length of time the material continues to burn and glow after the source of ignition is removed. The flame is held against the material for 15 seconds.
The seams of the glove shall not come apart after an ignition time of 15 seconds.

Swipe table to see more data
Performance LevelAfter Flame Time (s)After Glow Time (s)
120No requirement
210120
3325
425

B -  Contact heat resistance (Performance level 0-4)

Based on the temperature range at which the user will feel no pain for at least 15 seconds. During the testing, glove’s material is exposed to high temperatures (up to 500°C). To gain the relevant performance level, the temperature of the inside of the glove cannot increase more than 10°C within the threshold time (15 seconds).

Swipe table to see more data
Performance LevelContact Temperature °CThreshold Time
110015
225015
335015
450015

C - Convective heat resistance (Performance level 0-4)

Based on the length of time the glove is able to delay the transfer of heat from a flame.
Samples are subjected to the incident heat from a flame, and the amount of time is measured to increase of the glove’s inside material by 24°C.

D - Radiant heat resistance (performance level 0-4)

Based on the length of time the glove is able to delay the transfer of heat when exposed to a radiant heat source.

E - Resistance to small splashes of molten metal (Performance level 0-4)

The number of molten iron (other metals can be tested as required) drops required to heat the glove sample by 40°C, shows the performance level the glove corresponds to.

Performance LevelNumber of droplets
110
215
325
435

F - Resistance to large splashes of molten metal (Performance level 0-4)

A quantity of molten iron is poured onto the sample, which has simulant of skin attached to the sample. The weight of molten metal is measured of how much molten metal is required to damage the simulant of skin. The test is failed if metal droplets remain stuck to the specimen or if the specimen is punctured or ignites.

Performance LevelMolten Iron (g)
130
260
3120
4200
EN 511:2006

EN 511:2006

 

Gloves giving protection from cold (down to -50°C).

Protection against cold is expressed by a pictogram followed by a series of 3 performance levels, relating to specific protective qualities.

EN 5111abc
  • aConvective cold (x, min. 0, max.)
  • bContact cold (x, min. 0, max.)
  • cPenetration by water (x, 0/1 – after 30 min)

Level X means that this test cannot be carried out on this particular glove. The higher the level, the better performance.

A - Resistance to convective cold (Performance level 0 - 4)

Based on the thermal insulation properties of the glove. The power required to maintain a constant temperature on a heated hand model in a climatic room is measured. 

B - Resistance to contact cold (Performance level 0 - 4)

Based on the thermal resistance of the glove material when exposed to contact with a cold object.

C - Penetration by water (0 or 1)

0 = water penetrates after 30 minutes of exposure
1 = water does not penetrate after 30 minutes of exposure

EN 455

EN 455

Medical Gloves for Single Use


This standard specifies requirements and tests for gloves for medical purpose. Requirements are detailed in the Medical Device Directive 93/42/EEC.
This includes tests to assess the freedom from holes, the dimensions of the gloves and the mechanical strength of its materials, both before and after an ageing process.

Part 1
EN 455-1 covers requirements and testing of gloves for freedom from holes. For this test the standard uses a water leak test to which randomly sampled gloves are subjected. A statistical sample taken from a batch must achieve an acceptable quality level (AQL) of 1.5 or better in order to be used as examination, procedure or surgical gloves.
AQL 1.5 is equivalent to a maximum risk of 1.5% that any given glove contains a pinhole capable of allowing water, and therefore micro-organisms, through the material.

Part 2
EN 455-2 describes the testing requirements for determination of physical properties, including tensile strength, before and after accelerated ageing, of medical gloves.  Gloves are treated differently depending on the use they are intended for and the material they are manufactured from.

Swipe table to see more data
 Surgical GlovesExamination/Procedure Gloves made of Natural and Synthetic RubbersExamination/Procedure Gloves made of Thermoplastics (e.g. Vinyl and TEP material)
Force at Break in Newton≥ 9.0≥ 6.0≥ 3.6

Part 3
EN 455-3 covers requirements and testing for biological evaluation. It specifies methods for protein testing (extractable latex proteins have an important role in latex allergy), powder levels, and endotoxin levels.

Part 4
EN 455-4 covers requirements and testing for shelf life determination. It specifies real-time and accelerated shelf life studies, to enable manufacturers to prove that their product will withstand up to 3 years (usually) without losing their properties as well as complying with the requirements of the EN 455.

EN 12477:2001

EN 12477:2001

Protective gloves for welders.

This standard applies to protective gloves for use in manual metal welding, cutting and allied processes.  It includes reference to EN 420, EN 388 and EN 407 requirements.

Compliance to EN 420, except for lengths:

Size 6: 300mm
Size 7: 310mm
Size 8: 320mm
Size 9: 330mm
Size 10: 340mm
Size 11: 350mm

Type A: lower dexterity and higher performance for physical characteristics. This type is recommended for all welding operations where higher protection would be needed, except TIG* welding

Type B: higher dexterity and lower physical performance. This type is recommended for TIG welding.

Minimum performance required:

Swipe table to see more data
RequirementsStandardType AType B
Abrasion resistanceEN 388Level 2Level 1
Blade cut resistanceEN 388Level 1Level 1
Tear resistanceEN 388Level 2Level 1
Puncture resistanceEN 388Level 2Level 1
Burning behaviourEN 407Level 3Level 2
Contact heat resistanceEN 407Level 1Level 1
Convective heat resistanceEN 407Level 2-
Resistance to small splashes of molten metalEN 407Level 3Level 2
DexterityEN 420Level 1Level 4

*Tungsten inert gas (TIG) welding is an arc welding process that uses a non-consumable tungsten electrode to produce the weld.

Pictograms for the Various Relevant Standards

Pictograms for the Various Relevant Standards

EN 420EN 420
General requirements for protective gloves
ENEN 455
Medical gloves for single use
EN 374 3 2EN 374-3
Protective gloves against chemicals and micro-organisms
(Low chemical resistance)
EN 511EN 511
Gloves giving protection from cold
EN 374 3EN 374-3
Protective gloves against chemicals and micro-organisms
(Full chemical resistance)
EN 659EN 659
Protective gloves for firefighters
EN 374 2EN 374-2
Protective gloves against chemicals and micro-organisms (Resistance to penetration)
EN 1082EN 1082
Gloves and arm guards protecting against cuts and stabs by hand knives
EN 1149 7EN 1149
Protection against static electricity (ESD)
EN 388EN 388
Protective gloves against mechanical risks
ENEN 10819
Gloves giving protection from vibrations
EN 421EN 421
Protection against ionising radiation
ENEN 12477
Protective gloves for welders
EN 1073 2EN 421
Gloves giving protection from ionising radiation and radioactive contamination
EN 407EN 407
Protective gloves against thermal risks